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We calculate the relative intensities of the main incommensurate and third harmonic peaks expected from
elastic neutron scattering for various stripe phases observed in nickelates and some cuprate superconductors.
We consider vertical and diagonal stripes and compare both site- and bond-centered configurations of the
domain walls. Upon comparing the calculated ratio of the main incommensurate peaks to the next harmonic
peaks in these configurations to the background and errors in neutron scattering experiments, we conclude that
in most cases in the cuprates, the harmonic peaks expected from stripes are too weak to be detected.

DOI: 10.1103/PhysRevB.77.104526 PACS number�s�: 74.72.�h, 71.27.�a, 74.25.Ha, 75.40.Cx

I. INTRODUCTION

Strong electronic correlations can lead to a proliferation
of competing ground states and possibly new phases. There
is evidence that real-space electronic structure is a prominent
feature of the phase diagram of many strongly correlated
materials.1 Understanding where and when real-space order
happens is crucial to unravelling much of the novel elec-
tronic properties of these materials. One candidate set of
real-space electronic order, akin to electronic liquid crystals
because they break the rotational symmetry of the point
group of the host crystal, is commonly referred to as stripes.
Evidence linking these structures to superconductivity has
been seen in some families of cuprate superconductors,2–7

although evidence of stripe phases remains elusive in other
families of cuprates.

In their fully ordered state, stripes are a unidirectional,
interleaved spin and charge density wave, in which charge
stripes form antiphase domain walls in an otherwise antifer-
romagnetic texture. We are concerned here only with the spin
degrees of freedom. Elastic magnetic incommensurate �IC�
peaks consistent with static spin stripe order have been ob-
served in nickelate compounds, and also in a subset of cu-
prate superconductors, namely, La2−xBaxCuO4,
La1.6−xNd0.4SrxCuO4, La2CuO4+�, and La2−xSrxCuO4.8 The
validity of the stripe interpretation of the magnetic response
in the cuprates has been called into question based on the
low energy neutron results for three main reasons. First, the
observed patterns are usually fourfold symmetric, whereas a
single domain of spin stripes should produce a twofold sym-
metric scattering pattern. Second, while low energy spin
wave cones are observed in the nickelates, spin wave cones
are not observed in the cuprates. Rather, the incommensurate
peaks are observed to disperse inward toward the �� ,��
peak. Finally, no satellite peaks �third harmonic peaks� have
been observed.

Concerning the first point, the observation of fourfold
symmetric IC spin peaks is certainly consistent with a four-
fold symmetric pattern such as checkerboard phases. How-
ever, when considered along with data on elastic incommen-
surate charge peaks in materials where it is available, simple
checkerboards are ruled out,9 whereas stripe patterns are con-
sistent with the observed spin and charge peaks in materials
where both have been detected. The fourfold symmetric pat-

tern is also consistent with static stripe phases, in cases
where the stripes have a domain structure. Moreover, two-
fold symmetric patterns have been reported in detwinned
crystals.10,11

Secondly, the inability to resolve the spin wave cones in
cuprates has recently been shown to be due to weak spin
coupling across the charge domain walls.12,13 While static
spin stripes must have spin wave cones due to Goldstone’s
theorem, the intensity is not necessarily uniform. In fact, it is
highly peaked toward the �� ,�� direction when the effective
exchange coupling is weaker across the domain wall than the
full nearest-neighbor exchange away from the domain wall.

This paper aims to address the third objection listed
above, namely, that if static stripe order is present in the
cuprates, third harmonic peaks should have been observed in
elastic neutron scattering experiments. As we show below,
the third harmonic peaks are expected to be quite weak, and
experiments directly measuring Cu moments in
cuprates3,4,6,7,10,14–34 cannot yet rule out even �unphysically
sharp� square-wave stripes.

In this paper, we consider both vertical and diagonal stripe
configurations, where the domain walls are allowed to be
either site centered or bond centered. We discuss the model
and method for calculating the expected elastic peak intensi-
ties for neutron scattering in Sec. II. The results of these
calculations are presented in Sec. III. Finally, in Sec. IV, we
discuss our theoretical results in light of experimental results
for neutron scattering, comparing the expected ratio of in-
commensurate peaks to third harmonic peaks with the cur-
rent experimental signal-to-noise thresholds for a variety of
materials and dopings among the nickelates and cuprates.

II. MODEL

Since we are interested in neutron scattering experiments,
which directly detect the spins of electrons in a solid, we are
concerned then only with the response of the spin degrees of
freedom of stripes. We consider ordered spin stripes, which
are arrays of antiphase domain walls in an antiferromagnetic
background. By symmetry, each domain wall must have
some charge density on it.35 We will assume that the effects
of these charge degrees of freedom on the low energy spin
degrees of freedom may be subsumed into effective cou-
plings between spins across each domain wall.

PHYSICAL REVIEW B 77, 104526 �2008�

1098-0121/2008/77�10�/104526�9� ©2008 The American Physical Society104526-1

http://dx.doi.org/10.1103/PhysRevB.77.104526


For any given spin stripe pattern, the response of the spins
in a neutron scattering experiment is related to the dynamical
spin structure factor,

S�k,�� = �
f

�
i=x,y,z

��f �Si�k��0��2��� − � f� . �1�

In the case of elastic scattering, the elastic part of the struc-
ture factor is proportional to the square of the Fourier trans-
form of the static spin density:36,37

Sel�k,�� � �
q

�Sq
z �2��k − q����� , �2�

where Sq
z =1 /N�m,neia�mqx+nqy�Sm,n, m and n run over the lat-

tice sites in the x and y directions, respectively, a is the
lattice spacing, and the spin density Sm,n is taken to be in the
z direction.

We consider both vertical and diagonal stripes in cases
where the domain walls are site or bond centered. Stripes are
deemed “vertical” if the modulation vector is oriented paral-
lel to Cu-O or Ni-O bonds; they are “diagonal” if the modu-
lation vector is rotated 45° from this direction. It is not yet
clear from diffraction experiments exactly where the domain
walls lie,38 and so we consider both site-centered and bond-
centered domain walls. Site-centered domain walls are cen-
tered on Cu or Ni sites, while bond-centered domain walls
are centered between Cu /Ni sites, i.e., on the oxygen sites.
We also consider a variety of spacings between domain
walls.

In the case of bond-centered, vertical stripes, the static
spin modulation on each Cu /Ni site for a square-wave profile
may be written as

Sm,n
VB �p� = S�− 1�m�− 1�n�− 1��n̄�/hp, �3�

where p is the average domain wall spacing, h is the number
of domain walls encompassed within a repeat distance a, and
S is the net magnetic moment on each site. The local modu-
lation is antiferromagnetic, with a � phase shift in the static
magnetic texture of every p sites, caused by

n̄ � hn − �hn�mod a . �4�

The average spacing between domain walls is then p=a /h.
This reduces to the case of integer p when h=1. A schematic
of the corresponding spin-density modulation for p=3, 4,
and 5 is shown in Figs. 3�a�–3�c�. For noninteger spacing p,
this method constructs arrays of site-centered domain walls
or arrays of bond-centered domain walls, without mixing the
two. �See Ref. 40 for a treatment mixing site- and bond-
centered domain walls.� The noninteger spacing p corre-
sponds to the average spacing between gray lines in Fig. 6.
For the case of site-centered, vertical stripes, we introduce a
multiplier to enforce zero spin density on the sites along the
domain wall,

Sm,n
VS �p� = Sm,n

VB �p���n̄,n + 1� , �5�

where �i,j is the Kronecker delta.
Diagonal stripes may be defined in a similar manner �see

Figs. 4 and 2�. For bond-centered, diagonal stripes, this
yields

Sm,n
DB �p� = S�− 1�m�− 1�n�− 1���m + n�	/hp. �6�

For the diagonal, site-centered case, a multiplier is intro-
duced to enforce zero spin density on the sites along the
domain wall,

Sm,n
DS �p� = Sm,n

DB �p���n + m,m + n + 1� . �7�

There are two main effects of doping on the stripe struc-
ture. As doping x �i.e., the planar hole concentration� is in-
creased, the spacing p between domain walls can go down.
The second effect is that the linear density of holes along the
domain wall can increase with doping. For a given doping
and spacing between domain walls, the linear hole density is

� = xp�x� . �8�

This charge density is spread out in some envelope trans-
verse to the domain wall.

In the site-centered case, the spin density is constrained
by symmetry to be zero on the atomic sites which lie on the
domain wall, and so the minimum width for the domain wall,
and therefore the minimum extent of the envelope of the
doped holes transverse to the domain walls, is one lattice
site. Of course in real materials, charge will leak out beyond
this and diminish the static magnetic moment on sites which
neighbor the domain wall as well. It will suffice for our
purposes to consider the thinnest domain wall possible that
in which all of the doped charge density is on the sites on the
domain wall. This is the limit of “square-wave” site-centered
stripes. Although artificially sharp, these configurations pro-
vide an upper bound on the allowed intensity of the third
harmonic peaks. Any smoother profile of the charge and spin
density will diminish the third harmonic peaks further. For
bond-centered stripes, a similar square-wave limit is even
more unphysical, since it does not take into account the re-
duction of the spin density as holes are doped into the do-
main walls. In this paper, we focus on square-wave profiles
as a limiting case. As we will see, with current signal-to-
noise ratios in the cuprates, experiments directly measuring
Cu moments cannot yet rule out the possibility of third har-
monic peaks from even unphysically sharp square-wave
stripes if they are site centered.

III. RESULTS

A. Site-centered square-wave limit

We first present results for site-centered stripes using
square-wave profiles. Figures 1�a� and 1�c� show the real-
space structure of vertical, site-centered stripes of spacings
p=4 and p=5, respectively. In these diagrams, black is used
to represent the down spin, white is used to represent the up
spin, and gray denotes a static spin moment which is reduced
from the full value. In the case of site-centered stripes, sites
along the domain walls are constrained by symmetry to have
zero static spin moment. Figures 1�b� and 1�d� show the
expected elastic neutron scattering response for these con-
figurations. The intensity of each peak is normalized to that
of the main incommensurate peaks. Notice that even in this
most extreme case of a square-wave profile, the third har-
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monic peaks are quite weak. We have not shown the case
p=3, since for site-centered stripes of odd spacing, peaks at
�0,�� are extinguished due to symmetry,12 i.e., the ratio of
intensities between the third harmonic and main IC peaks in
this case is �. For stripes of spacing p=4, as happens near
the 1 /8 anomaly, although the third harmonic peaks are non-
zero, they are 34 times weaker than the main IC peaks, as has
been noted previously in Refs. 12 and 45. As the spacing p
increases, the third harmonic peaks become more pro-
nounced, but they are still 18 times weaker than the main IC
peaks at p=5. In Sec. IV, we discuss whether third harmonic
peaks should be expected to be observed with current experi-
mental capabilities, keeping in mind that in real materials,
the domain walls are surely broader due to quantum effects,
suppressing the third harmonic peaks even further. The case
of diagonal site-centered stripes with square-wave profiles is
shown in Fig. 2. The expected ratios for IC to harmonic
peaks are the same in this case as for the vertical case. These
results are summarized in Table I.

B. Bond-centered square-wave limit

In Figs. 3 and 4, we present results for bond-centered
stripes using square-wave profiles. Figures 3�a�, 3�c�, and
3�e� show the real-space structure of vertical, bond-centered
stripes of spacings p=3, 4, and 5, respectively. Note that in
the bond-centered case, the domain walls lie between sites,
and so for a square-wave profile, all sites have the full spin

value. This neglects the linear hole density which must reside
on each domain wall, reducing the average spin moment per
site, as discussed in Sec. II. Figures 3�b�, 3�d�, and 3�f� show
the expected elastic neutron scattering response for the
square-wave configurations. When the spacing p between
domain walls is odd, bond-centered stripes display third har-
monic peaks of finite intensity at �0,��; such peaks are for-
bidden in the site-centered case for odd spacing p.12 The
intensity of the third harmonic peak in the bond-centered
case for spacings p=3, 4, and 5 with square-wave profiles is
suppressed from the value of the main IC peaks by a factor
of 4.2, 5.8, and 6.9, respectively. The case of diagonal bond-
centered stripes with square-wave profiles is shown in Fig. 4.
The expected ratios for third harmonic to IC peaks are the

FIG. 1. Vertical, site-centered stripes of spacings p=4 and 5
with square-wave profiles. Panels �a� and �c� show the real-space
pattern of the spin structure for spacings p=4 and p=5, respec-
tively. Panels �b� and �d� show the corresponding neutron diffrac-
tion patterns, with intensities normalized to that of the main IC
peaks. For a spacing p=4, the third harmonic peak intensity is
1 /34=2.9% of the main IC peaks �Refs. 12 and 45�; for p=5, it is
1 /18=5.5% of the main IC peaks.

FIG. 2. Diagonal, site-centered stripes of spacings p=4 and 5
with square-wave profiles. Panels �a� and �c� show the real-space
pattern of the spin structure for spacings p=4 and p=5, respec-
tively. Panels �b� and �d� show the corresponding neutron diffrac-
tion patterns, with intensities normalized to that of the main IC
peaks. Intensity ratios are identical to those of Fig. 1.

TABLE I. Commensurate spacing: ratio of the main IC peak
intensity to the third harmonic peak for square-wave stripes of spac-
ings p=3, 4, and 5 for both site-centered and bond-centered con-
figurations of the domain walls. For square-wave profiles, the peak
ratios are independent of whether the domain walls are vertical or
diagonal.

Domain wall Spacing Peak ratio

Site centered 3 �

Site centered 4 34

Site centered 5 18

Bond centered 3 4.2

Bond centered 4 5.8

Bond centered 5 6.9
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same in this case as for the vertical case. These results are
summarized in Table I.

C. Other cases

In this section, we consider the effects of noninteger spac-
ing p, as well as deviations from the square-wave limit. Us-
ing the method outlined in Sec. II, we have studied arrays of
domain walls with average spacings from p=4− 1

3 to p=4
+ 1

3 . In Table II, we report the ratio of the main IC peak
intensity to the third harmonic peak for higher commensura-
bility spacings, i.e., for noninteger, rational p. Real-space
figures of these configurations, as well as the expected neu-

tron diffraction pattern, are shown in Figs. 5 and 6. We have
focused on spacings near p=4, since spacings near this value
are most common in underdoped superconducting cuprates
which also display IC peaks in neutron scattering. It is im-
portant to note that these are the ratios of the largest peak
�i.e., the main IC peak� divided by the third harmonic peak.
In the bond-centered case, the next largest peak after the
main IC peak is the third harmonic peak. The peak ratios of
the main IC peaks to the third harmonic peaks are somewhat

FIG. 3. Vertical, bond-centered stripes of spacings p=3, 4, and 5
with square-wave profiles. Panels �a�, �c�, and �e� show the real-
space pattern of the spin structure for spacings p=3, p=4, and p
=5, respectively. Panels �b�, �d�, and �f� show the corresponding
neutron diffraction patterns, with intensities normalized to that of
the main IC peaks. For a spacing p=3, the harmonic peak intensity
is 1 /4.2=24% of the main IC peaks; for p=4, it is 1 /5.8=17%, and
for p=5, the third harmonic peak is 1 /6.9=14% of the main IC
peaks. Note that there is a fifth harmonic peak for p=5, which was
forbidden in the site-centered case at this spacing.

FIG. 4. Diagonal, bond-centered stripes of spacings p=3, 4, and
5 with square-wave profiles. Panels �a�, �c�, and �e� show the real-
space pattern of the spin structure for spacings p=3, p=4, and p
=5, respectively. Panels �b�, �d�, and �f� show the corresponding
neutron diffraction patterns, with intensities normalized to that of
the main IC peaks. Intensity ratios are identical to those of Fig. 3.

TABLE II. Incommensurate spacing: ratio of the main IC peak
intensity to the third harmonic peak for incommensurate spacings
p=4− 1

3 to p=4+ 1
3 for both site-centered and bond-centered con-

figurations of the vertical and diagonal domain walls.

Incommensurate spacing
Domain wall Spacing Peak ratio

Site centered 4− 1
3 89

Site centered 4− 1
5 70

Site centered 4− 1
9 61

Site centered 4+ 1
9 45

Site centered 4+ 1
5 41

Site centered 4+ 1
3 35

Bond centered 4− 1
3 8.5

Bond centered 4− 1
5 8.8

Bond centered 4− 1
9 8.95

Bond centered 4+ 1
9 9.0

Bond centered 4+ 1
5 8.9

Bond centered 4+ 1
3 8.7

FIG. 5. Higher commensurate bond-centered stripes of spacings
p=4+ 1

3 and p=4− 1
3 with square-wave profiles. Panels �a� and �c�

show the real-space pattern of the spin structure for spacings p=4
+ 1

3 and p=4− 1
3 , respectively. Panels �b� and �d� show the corre-

sponding neutron diffraction patterns, with intensities normalized to
that of the main IC peaks.
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larger in the higher commensurate case �noninteger, rational
p� as compared to the case of integer p. This means that
higher commensurabilities make the third harmonic peaks
harder to detect, although �in the limit of square-wave pro-
files� not much harder to detect.

We now briefly consider deviations from the limiting case
of square waves we have considered thus far. In the opposite
limit of a sinusoidal modulation �whether bond or site cen-
tered�, the peak ratios become infinite, despite the effects of
an underlying lattice, even for arbitrarily high commensura-
bilities. Because of this, deviations from the square-wave
limit we have focused on, toward the sinusoidal limit, rapidly
tend toward vanishing third �and higher� harmonic peaks.
For example, in the case of vertical, site-centered stripes of
spacing p=4, a linear interpolation that is 50% of the way
between the real-space spin density for the square-wave case
and that of the sine wave case has a peak ratio intensity of
120, roughly a threefold increase over the square-wave limit.
For an interpolation that is 90% of the way toward the sinu-
soidal limit, the ratio exceeds 1000. This suggests that even
if experiments achieve significantly better resolution, setting
experimental constraints on the actual shape of the spin-
density wave will likely remain elusive.

IV. DISCUSSION

We now address the central question of this paper: If we
interpret incommensurate peaks in neutron scattering experi-
ments on cuprates as arising from stripe structures �see Ref.
38 for a recent review of the relevant data�, is this consistent
with the lack of observation of magnetic third harmonic
peaks given the current experimental facts. Our conclusion is

that experiments which directly detect Cu moments cannot
yet rule out the presence of third harmonic peaks in cuprates
even for the unphysically sharp case of square-wave stripes.

Tables III and IV compare current experimental limits
with the expected ratio of the intensity of the main IC peak
to that of the next harmonic peak in cuprates. Table V shows
corresponding data for the nickelates, for comparison. For
each material at a particular chemical doping, we use the
incommensurability at the lowest reported energy to deter-
mine the nearest stripe spacing which is commensurate with
the atomic lattice. From this, we have calculated the ex-
pected ratio of the third harmonic peak to the main incom-
mensurate peak for static spin stripes, labeled “peak ratio” in
the tables. We use the nearest commensurate spacing, since
this enhances the expected intensity from third harmonic
peaks. For incommensurate stripe spacings, the intensity
from third harmonic peaks is lessened, and the peak ratio
will be even higher than what is listed in the table. The ratios
P /E and P /B are gleaned from the literature in each case.
The ratio of the peak intensity �the height of the peak� to the
reported error bars for the measurement is denoted by P /E.
The ratio P /B is obtained by dividing the maximum intensity
of the IC peaks by the intensity of the background noise in
the vicinity of the peaks. Both of these numbers should be
compared to the expected peak ratio, i.e., the expected inten-
sity ratio between the main IC peaks and the third harmonic
peaks for the limiting cases considered here. The range re-
ported for the calculated peak ratio spans from bond-centered
square-wave stripes �the smaller number� to site-centered
square-wave stripes �the larger number�. It should be empha-
sized of course that both of these calculated cases have
sharper domain walls than should be expected in real mate-
rials, where quantum effects serve to broaden the width of
the charge domain walls, further suppressing the expected
intensity of the third harmonic peaks.

For dopings x	0.13, the neutron scattering response in
La2−xSrxCuO4 �LSCO� develops a measurable gap. In these
cases, the stripes are at best quantum disordered, rather than
the static, ordered cases considered here. However, it has
been recently shown13 that even on the quantum disordered
side of the quantum critical point �QCP� between static spin
stripes and quantum disordered stripes, the distribution of the
energies and intensities of the magnetic response strongly
resembles the semiclassical approximation applicable to or-
dered spin stripes. This strong resemblance has been attrib-
uted to the small value of the critical exponent 
=0.037
�1 at the QCP.13 For dopings x	0.13, we compare to the
measured incommensurability at the lowest energy for which
the signal is discernible. As long as the lowest energies at
which there is a response are not too high, the expected
intensity ratios at these energies are largely controlled by the
corresponding intensity ratios for the static peaks of ordered
spin stripes, which is what we have calculated.

YBa2Cu3O7−x �YBCO� always has a spin gap, consistent
with the spin component of the stripes being quantum disor-
dered. Recent high energy neutron scattering experiments on
static stripe-ordered La2−xBaxCuO4 �LBCO� and YBCO have
demonstrated a universality of the magnetic excitations
among LSCO,29 LBCO,3,49 and YBCO.4,50 �see, e.g., Fig. 8.3
in Ref. 38� This universality among the energy spectrum and

FIG. 6. Higher commensurate site-centered stripes of spacings
p=4+ 1

3 and p=4− 1
3 with square-wave profiles. Panels �a� and �c�

show the real-space pattern of the spin structure for spacings p=4
+ 1

3 and p=4− 1
3 , respectively. Panels �b� and �d� show the corre-

sponding neutron diffraction patterns, with intensities normalized to
that of the main IC peaks.
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intensities of magnetic excitations both for spin stripe-
ordered and quantum disordered materials is another cor-
roboration that in these materials, the QCP is weak enough,
and also that the quantum disordered materials are close
enough to the QCP, which the dispersions and intensities at
the lowest observable frequencies can still be inferred from

the static, spin-ordered patterns as calculated here.13

We use two measures from the literature to gauge whether
third harmonic peaks are detectable: the ratio of the intensity
of the main IC peak to the error bars �P /E� and to the back-
ground signal �P /B�. Ideally, both of these should be larger
than the calculated peak ratio for third harmonic peaks to be

TABLE III. Comparison between published experimental sensitivities and the theoretical relative intensity
of the main IC peaks to the third harmonic peaks for lanthanum cuprates. The doping in this table is the
chemical doping x in La2CuO4+x, La2−xBaxCuO4, La1.875Ba0.125−xSrxCuO4, La1.6−xNd0.4SrxCuO4, and
La2−xSrxCuO4. The ratios P /E and P /B are the ratio of the peak intensity to reported error bars and to the
background, respectively, as taken from experiment. A dash in the P /B column indicates that the background
was subtracted in published data. The theoretical range of peak ratio encompasses both bond-centered and
site-centered square-wave profiles. Spacing denotes the closest commensurate spacing corresponding to the
observed IC peaks. Asterisks next to references indicate inelastic neutron scattering; all others are elastic
scattering.

Material Doping Spacing P /E P /B Peak ratio Ref.

LCO 0.11 4 10 2–3 5.8–34 31

LCO 0.12 4 7 2–3 5.8–34 32

LBCO 0.125 4 7–9 4 5.8–34 15*, 3*
LBSCO 0.05 4 7 2–3 5.8–34 30

LNSCO 0.15 4 25–30 2 5.8–34 39

LNSCO 0.12 4 7–12 4–20 5.8–34 55 and 41

LSCO 0.014 25 9 — 8.9–9.2 28

LSCO 0.05 10–11 8–9 2–3 8.4–10 10 and 14

LSCO 0.06 10 7 2–3 8.4–10 2*
LSCO 0.10 5 9 2 6.9–18 26*
LSCO 0.12 4 6–9 2 5.8–34 33, 34, and 2*
LSCO 0.14 4 6 2 5.8–34 19*
LSCO 0.15 4 5–6 2–3 5.8–34 27*, 17*
LSCO 0.16 4 7–8 — 5.8–34 29*
LSCO 0.17 4 6 2 5.8–34 25*
LSCO 0.18 4 6 1.7 5.8–34 22*
LSCO 0.20 4 4 2 5.8–34 18*, 20*
LSCO 0.25 4 6–17 2–3 5.8–34 7*, 2*

TABLE IV. Comparison between published experimental sensitivities and the theoretical relative intensity
of the main IC peaks to the third harmonic peaks for yttrium-based cuprates. The doping in this table is the
chemical doping � in YBa2Cu3O6+�. The ratios P /E and P /B are the ratio of the peak intensity to reported
error bars and to the background, respectively, as taken from experiment. A dash in the P /B column indicates
that the background was subtracted in published data. The theoretical range of peak ratio encompasses both
bond-centered and site-centered square-wave profiles. Spacing denotes the closest commensurate spacing
corresponding to the observed IC peaks. Asterisks next to references indicate inelastic neutron scattering.

Material Doping Spacing P /E P /B Peak ratio Ref.

YBCO 0.45 8 6 2 8.1–11 42*
YBCO 0.5 5 3 1.3–2 6.9–18 23*
YBCO 0.6 5 4–12 1.6–2 6.9–18 16*, 4*, 21*, 42*
YBCO 0.7 5 6–9 1.3 6.9–18 43*, 42*
YBCO 0.8 5 14 — 6.9–18 42*
YBCO 0.85 5 7 — 6.9–18 44*
YBCO 0.95 5 5 1.4 6.9–18 42*
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detectable. In practice, detection is possible if one of these
ratios is sufficiently larger than the expected peak ratio.

In Tables III–V the most likely candidate for third har-
monic peak detection is La2NiO4+x �see Table V�, with a
peak to background ratio of P /B
500, as compared with
the theoretical upper limit for the peak ratio, 5.8–34. Indeed,
third �and higher� harmonic peaks have been detected in this
material.40 Other good candidates are La2−xSrxNiO4 at dop-
ings x=0.275 and 0.33.51,53,54 Contrast the ratios of P /E and
P /B in the nickelates with those of the cuprates. Whereas
many of the nickelate compounds have peak to background
ratios on the order of P /B
50–100, exceeding the calcu-
lated peak ratio for detection of third harmonic peaks, in the
cuprates, this number is typically P /B
2–3, far below what
is needed to detect third harmonic peaks.

A notable exception is La1.6−xNd0.4SrxCuO4. In this com-
pound, the Nd moments order at low temperature �T
�3–8 K�, enhancing the signal, so that P /B
20 in Ref. 55.
Very recent experiments on this compound have achieved
P /B
2000, without a clear observation of the third har-
monic peak.57 If it can be established that the Nd moments
are indeed reflective of the in-plane Cu ordering, this will
place serious constraints on the profile of the spin-density
wave. In the undoped case, Nd moments couple to only one
copper site �directly through the Cu-O-Nd bond�, and cou-
pling to the four adjacent Cu sites in the next plane cancels
by symmetry. In this case, it is clear that each Nd moment is
“slaving” to one and only one Cu site. However, in the doped
case in the low temperature tetragonal phase, Nd moments
which are adjacent to a charge stripe have a symmetry-
allowed coupling to Cu moments in both adjacent planes,
which may affect the intensity of the harmonic peaks. We
base our conclusions here on data derived purely from Cu
moments.

Even in the presence of a sizable background signal, if the
uncertainty in the intensity is small enough, one might hope
to be able to detect weak peaks by some signal processing
such as fitting the form of the peak. In the cuprates �see
Tables III and IV�, the ratio of the peak intensity to error is

typically P /E
6–10. �Again, La1.6−xNd0.4SrxCuO4 �LN-
SCO� is the anomaly as explained above.� This is on the
verge of detection for square-wave bond-centered stripes. Of
course, as emphasized before, bond-centered stripes in a real
material must have a finite width to the domain wall in order
to account for doping, which further diminishes the strength
of the third harmonic peaks. Moreover, the ratio P /E is too
low to be able to rule out the presence of third harmonic
peaks due to square-wave site-centered stripes.

V. CONCLUSIONS

In conclusion, we have calculated the expected intensities
for both the main incommensurate peaks and the third har-
monic peaks for static spin stripes of various spacings and
dopings. Even in limiting cases with overly sharp domain
walls which enhance the third harmonic peaks, such as bond-
centered and site-centered stripes with square-wave profiles,
the third harmonic peaks expected from static spin stripe
structures are greatly suppressed as compared to the strength
of the main incommensurate peaks. Including effects of
higher commensurabilities further diminishes the third har-
monic peaks, although not much. On the other hand, relaxing
the square-wave limit and tending toward a more sinusoidal
modulation rapidly suppresses the strength of the third har-
monic. By comparing the intensity of the main IC peak to
both the experimental uncertainty and background, we con-
clude that in the cuprates, none of the experiments which
directly measure Cu moments are yet sensitive enough to
rule out even the unphysically sharp case of square-wave
site-centered stripes.
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TABLE V. Comparison between the experimental signal-to-noise ratio and the expected relative intensity
of the main IC peaks to the third harmonic peaks for various materials. The doping in this table is the
chemical doping x in La2NiO4+x and La2−xSrxNiO4. The ratios P /E and P /B are the ratio of the peak
intensity to reported error bars and to the background, respectively, as taken from experiment. The theoretical
range of peak ratio encompasses both bond-centered and site-centered square-wave profiles. Spacing denotes
the closest commensurate spacing corresponding to the observed IC peaks. Asterisks next to references
indicate inelastic neutron scattering; all others are elastic scattering.

Material Doping Spacing P /E P /B Peak ratio Ref.

LNO 0.13 4 23 500 5.8–34 40

LSNO 0.2 4 13–20 6–7 5.8–34 46 and 47

LSNO 0.225 4 10 25 5.8–34 48

LSNO 0.275 4 8 25–50 5.8–34 51 and 53*
LSNO 0.33 3 12–15 50–100 4–� 54*
LSNO 0.37 3 11 	80 4–� 52
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